
PredictingHousingPrices

March 31, 2025

1 Predicting Housing Prices Based on Different Features
1.1 Purpose
Predicting housing prices accurately is crucial for buyers, sellers, real estate agents, and investors.
The House Prices - Advanced Regression Techniques dataset from Kaggle provides a rich collection
of 79 explanatory variables describing various aspects of residential homes in Ames, Iowa. The
objective is to predict the final sale price of each home.

In this project, we explore predictive modeling approaches to forecast house prices. Our goal is to
build a regression model that minimizes the Root Mean Squared Error (RMSE), as this metric is
used by the competition to evaluate model performance. However, I will be using other evaluation
metrics as well for better comparison.

[4]: import pandas as pd
import numpy as np

train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')

[5]: train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 Id 1460 non-null int64
1 MSSubClass 1460 non-null int64
2 MSZoning 1460 non-null object
3 LotFrontage 1201 non-null float64
4 LotArea 1460 non-null int64
5 Street 1460 non-null object
6 Alley 91 non-null object
7 LotShape 1460 non-null object
8 LandContour 1460 non-null object
9 Utilities 1460 non-null object
10 LotConfig 1460 non-null object
11 LandSlope 1460 non-null object

1

12 Neighborhood 1460 non-null object
13 Condition1 1460 non-null object
14 Condition2 1460 non-null object
15 BldgType 1460 non-null object
16 HouseStyle 1460 non-null object
17 OverallQual 1460 non-null int64
18 OverallCond 1460 non-null int64
19 YearBuilt 1460 non-null int64
20 YearRemodAdd 1460 non-null int64
21 RoofStyle 1460 non-null object
22 RoofMatl 1460 non-null object
23 Exterior1st 1460 non-null object
24 Exterior2nd 1460 non-null object
25 MasVnrType 588 non-null object
26 MasVnrArea 1452 non-null float64
27 ExterQual 1460 non-null object
28 ExterCond 1460 non-null object
29 Foundation 1460 non-null object
30 BsmtQual 1423 non-null object
31 BsmtCond 1423 non-null object
32 BsmtExposure 1422 non-null object
33 BsmtFinType1 1423 non-null object
34 BsmtFinSF1 1460 non-null int64
35 BsmtFinType2 1422 non-null object
36 BsmtFinSF2 1460 non-null int64
37 BsmtUnfSF 1460 non-null int64
38 TotalBsmtSF 1460 non-null int64
39 Heating 1460 non-null object
40 HeatingQC 1460 non-null object
41 CentralAir 1460 non-null object
42 Electrical 1459 non-null object
43 1stFlrSF 1460 non-null int64
44 2ndFlrSF 1460 non-null int64
45 LowQualFinSF 1460 non-null int64
46 GrLivArea 1460 non-null int64
47 BsmtFullBath 1460 non-null int64
48 BsmtHalfBath 1460 non-null int64
49 FullBath 1460 non-null int64
50 HalfBath 1460 non-null int64
51 BedroomAbvGr 1460 non-null int64
52 KitchenAbvGr 1460 non-null int64
53 KitchenQual 1460 non-null object
54 TotRmsAbvGrd 1460 non-null int64
55 Functional 1460 non-null object
56 Fireplaces 1460 non-null int64
57 FireplaceQu 770 non-null object
58 GarageType 1379 non-null object
59 GarageYrBlt 1379 non-null float64

2

60 GarageFinish 1379 non-null object
61 GarageCars 1460 non-null int64
62 GarageArea 1460 non-null int64
63 GarageQual 1379 non-null object
64 GarageCond 1379 non-null object
65 PavedDrive 1460 non-null object
66 WoodDeckSF 1460 non-null int64
67 OpenPorchSF 1460 non-null int64
68 EnclosedPorch 1460 non-null int64
69 3SsnPorch 1460 non-null int64
70 ScreenPorch 1460 non-null int64
71 PoolArea 1460 non-null int64
72 PoolQC 7 non-null object
73 Fence 281 non-null object
74 MiscFeature 54 non-null object
75 MiscVal 1460 non-null int64
76 MoSold 1460 non-null int64
77 YrSold 1460 non-null int64
78 SaleType 1460 non-null object
79 SaleCondition 1460 non-null object
80 SalePrice 1460 non-null int64

dtypes: float64(3), int64(35), object(43)
memory usage: 924.0+ KB

1.2 Preprocessing
We observe: - 1460 training samples - Some features have missing values - Mix of numerical and
categorical features

[7]: # Drop features with too many missing values or not useful
train = train.drop(columns=['Alley', 'PoolQC', 'Fence', 'MiscFeature'])

Fill in missing values
train['LotFrontage'] = train['LotFrontage'].fillna(train['LotFrontage'].

↪median())
train['GarageYrBlt'] = train['GarageYrBlt'].fillna(train['GarageYrBlt'].

↪median())

Fill categorical NA with 'None' or mode
for col in train.select_dtypes(include='object'):

train[col] = train[col].fillna('None')

Fill remaining numeric NA with median
for col in train.select_dtypes(include='number'):

train[col] = train[col].fillna(train[col].median())

[8]: train_encoded = pd.get_dummies(train.drop(columns=['Id']), drop_first=True)
train.head()

3

[8]: Id MSSubClass MSZoning LotFrontage LotArea Street LotShape LandContour \
0 1 60 RL 65.0 8450 Pave Reg Lvl
1 2 20 RL 80.0 9600 Pave Reg Lvl
2 3 60 RL 68.0 11250 Pave IR1 Lvl
3 4 70 RL 60.0 9550 Pave IR1 Lvl
4 5 60 RL 84.0 14260 Pave IR1 Lvl

Utilities LotConfig … EnclosedPorch 3SsnPorch ScreenPorch PoolArea \
0 AllPub Inside … 0 0 0 0
1 AllPub FR2 … 0 0 0 0
2 AllPub Inside … 0 0 0 0
3 AllPub Corner … 272 0 0 0
4 AllPub FR2 … 0 0 0 0

MiscVal MoSold YrSold SaleType SaleCondition SalePrice
0 0 2 2008 WD Normal 208500
1 0 5 2007 WD Normal 181500
2 0 9 2008 WD Normal 223500
3 0 2 2006 WD Abnorml 140000
4 0 12 2008 WD Normal 250000

[5 rows x 77 columns]

[9]: X = train_encoded.drop('SalePrice', axis=1)
y = train_encoded['SalePrice']

y_log = np.log1p(y)

In the preprocessing stage, we began by addressing missing values and preparing the dataset for
modeling. Several features such as Alley, PoolQC, Fence, and MiscFeature contained a large number
of missing values and were deemed either too sparse or not useful, so they were dropped from the
dataset. For numerical features with missing values like LotFrontage and GarageYrBlt, we filled
them using the median of each respective column. Categorical variables were imputed with the
string ‘None’ to indicate the absence of a feature (e.g., no alley access or no fireplace), preserving
potentially meaningful structural information. Any remaining numeric columns with missing data
were also filled using the median to maintain consistency. After handling missing values, we applied
one-hot encoding using pd.get_dummies() to convert categorical variables into binary indicator
variables, enabling them to be used effectively in regression models. We also dropped the Id
column (as it is just an identifier) and separated the feature matrix X from the target variable y,
which contains the sale prices. This preprocessing pipeline ensures the data is clean, fully numeric,
and suitable for model training.

1.3 Visualizations
Before we move on, I believe it is important to understand our data’s limitations, specifically when
it comes to distribution between category. I believe that understanding the data on a deeper level
is valuable so we’ll be using some visualizations.

4

[13]: import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

plt.figure(figsize=(8,5))
sns.histplot(train['SalePrice'], kde=True, bins=30)
plt.title('Distribution of Sale Prices')
plt.xlabel('Sale Price')
plt.ylabel('Frequency')
plt.show()

The distribution of sale prices is right-skewed, meaning a few expensive houses pull the average
higher. This justifies using a log transformation to normalize the target variable.

1.3.1 Log-Transformed SalePrice Distribution

[16]: plt.figure(figsize=(8,5))
sns.histplot(np.log1p(train['SalePrice']), kde=True, bins=30)
plt.title('Log-Transformed Sale Price Distribution')
plt.xlabel('Log(Sale Price)')
plt.ylabel('Frequency')
plt.show()

5

After applying log1p, the distribution of prices becomes more normal, which improves performance
for regression models that assume normality of residuals.

1.3.2 Sale Price vs GrLivArea

[19]: plt.figure(figsize=(8,5))
sns.scatterplot(data=train, x='GrLivArea', y='SalePrice')
plt.title('Sale Price vs. Above Ground Living Area')
plt.xlabel('GrLivArea')
plt.ylabel('SalePrice')
plt.show()

6

There is a clear positive correlation between living area and sale price—larger houses tend to be
more expensive. However, some outliers (very large homes with low prices) may affect the model.

1.3.3 Score Category Breakdown by Family Income

[22]: plt.figure(figsize=(8,5))
sns.boxplot(data=train, x='OverallQual', y='SalePrice')
plt.title('Sale Price by Overall Quality')
plt.xlabel('Overall Quality')
plt.ylabel('Sale Price')
plt.show()

7

Overall quality is one of the most important predictors. Houses with higher quality ratings tend
to have significantly higher prices.

1.3.4 Linear Regression - Experiment 1

What is Regression? Regression is a type of supervised machine learning used to predict contin-
uous outcomes based on input variables (also called features). The goal is to model the relationship
between the dependent variable (target) and one or more independent variables (features).

For example, in a project predicting house prices, the target variable is the house price, and the
features might include square footage, number of bedrooms, neighborhood, etc.

What is Linear Regression? Linear regression is one of the simplest and most widely used
forms of regression. It assumes a linear relationship between the input features and the target
variable.

In simple linear regression (with one feature), the model is:

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀
- 𝑦: predicted value (e.g., house price) - 𝑥: input feature (e.g., square footage) - 𝛽0: intercept
(bias term) - 𝛽1: slope (coefficient for the feature) - 𝜀: error term (difference between actual and
predicted)

In multiple linear regression (with multiple features), the formula becomes:

8

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜀

Or, in vector/matrix form:

̂𝑦 = 𝑋𝛽

Where: - ̂𝑦: vector of predicted values - 𝑋: matrix of input features - 𝛽: vector of coefficients

The model learns the best values for the coefficients 𝛽 by minimizing the cost function, typically
the Mean Squared Error (MSE):

MSE = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

The model’s goal is to minimize this error during training.

[25]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import (

mean_squared_error,
mean_squared_log_error,
mean_absolute_error,
r2_score

)

split the data
X_train, X_val, y_train, y_val = train_test_split(X, y_log, test_size=0.2,␣

↪random_state=42)

train
model = LinearRegression()
model.fit(X_train, y_train)

predict on validation
y_pred = model.predict(X_val)

evaluate
rmse = np.sqrt(mean_squared_error(y_val, y_pred))
rmsle = np.sqrt(mean_squared_log_error(y_val, y_pred))
mae = mean_absolute_error(y_val, y_pred)
r2 = r2_score(y_val, y_pred)

print(f'RMSE: {rmse:.4f}')
print(f'RMSLE: {rmsle:.4f}')
print(f'MAE: {mae:.4f}')
print(f'R²: {r2:.4f}')

9

RMSE: 0.2109
RMSLE: 0.0173
MAE: 0.0981
R²: 0.7616

Evaluation of Experiment 1 In Experiment 1, I trained a baseline linear regression model
and evaluated its performance using multiple regression metrics. The model achieved an RMSE
of 0.2109, which indicates that the average prediction error on the log-transformed house prices is
relatively low. The RMSLE value of 0.0173 suggests that the model performs particularly well in
terms of predicting values that are close in relative scale to the actual prices—this is useful given
the skewed nature of price distributions. The MAE of 0.0981 further confirms that the average
magnitude of errors is under 0.1, meaning predictions are generally close to actual values. Lastly,
the R² score of 0.7616 implies that the model explains about 76% of the variance in the target
variable, which is a strong result for an initial experiment using basic preprocessing and linear
regression. These results establish a solid baseline and give direction for further experiments, such
as testing alternative models or improving feature selection.

1.3.5 Lasso Regression

Lasso Regression (Least Absolute Shrinkage and Selection Operator) is a regularized version of
linear regression that adds an 𝐿1 penalty to the loss function. This penalty encourages the model
to reduce the magnitude of less important feature coefficients to zero, which can effectively perform
feature selection while fitting the model.

In standard linear regression, the goal is to minimize the Mean Squared Error (MSE):

MSE = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗)
2

Lasso regression modifies this by adding an 𝐿1 regularization term:

𝐽(𝛽) = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗)
2

+ 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗|

Where: - 𝑦𝑖: the actual target value. - 𝛽0: the intercept. - 𝛽𝑗: the coefficients for the features 𝑥𝑖𝑗.
- 𝑛: the number of observations. - 𝜆 (or sometimes 𝛼): the regularization parameter controlling
the strength of the penalty.

The effect of the 𝐿1 penalty is twofold: - Regularization: It helps prevent overfitting by discouraging
large coefficients. - Feature Selection: It can shrink some coefficients exactly to zero, effectively
eliminating less relevant features from the model.

This balance between accurately fitting the data and keeping the model simple and interpretable
makes Lasso regression a powerful tool in regression problems.

[28]: from sklearn.linear_model import Lasso
from sklearn.metrics import mean_squared_error, mean_squared_log_error,␣

↪mean_absolute_error, r2_score

10

import numpy as np

Using the same train/test split as Experiment 1

initialize and train a Lasso regression model (experiment with the alpha␣
↪parameter using 0.0001)

model_lasso = Lasso(alpha=0.0001, random_state=42)
model_lasso.fit(X_train, y_train)

predict on the validation set
y_pred_lasso = model_lasso.predict(X_val)

calculate evaluation metrics
rmse_lasso = np.sqrt(mean_squared_error(y_val, y_pred_lasso))
rmsle_lasso = np.sqrt(mean_squared_log_error(y_val, y_pred_lasso))
mae_lasso = mean_absolute_error(y_val, y_pred_lasso)
r2_lasso = r2_score(y_val, y_pred_lasso)

print(f'Lasso RMSE: {rmse_lasso:.4f}')
print(f'Lasso RMSLE: {rmsle_lasso:.4f}')
print(f'Lasso MAE: {mae_lasso:.4f}')
print(f'Lasso R²: {r2_lasso:.4f}')

Lasso RMSE: 0.1442
Lasso RMSLE: 0.0113
Lasso MAE: 0.0932
Lasso R²: 0.8885

Evaluation - Experiment 2 I used an alpha of 0.0001 because based on experiments, it created
the lowest RMSE. Based on these metrics, Lasso Regression shows how introducing an 𝐿1 penalty
affects model performance. The RMSE and RMSLE values indicate how closely the predicted
values match the true targets on both absolute and relative scales, respectively. The MAE (Mean
Absolute Error) reveals the average magnitude of errors, which can help interpret how far off
predictions are in practical terms. Finally, the 𝑅2 score reflects the proportion of variance in the
target variable explained by the model. Comparing these metrics to those from the baseline linear
regression experiment helps you determine whether regularization and feature selection via Lasso
have improved overall performance—or if tuning the regularization parameter (𝛼) or exploring
additional features is necessary to further enhance the model.

1.3.6 Random Forest - Experiment 3

Random Forest Regression is an ensemble learning method that builds multiple decision trees and
aggregates their predictions to improve overall accuracy and robustness. For a regression task, the
final prediction is typically the average of the predictions from all individual trees.

Consider a training dataset {(𝑥𝑖, 𝑦𝑖)}𝑁
𝑖=1. 1. Bootstrap Sampling: For each tree t in the forest, a

bootstrap sample 𝑆𝑡 is drawn from the training data. This sampling with replacement introduces
variability into the trees. 2. Tree Construction: Each decision tree 𝑓𝑡(𝑥) is built on its respective

11

bootstrap sample. At each node in the tree, a random subset of features is selected, and the best
split is chosen based on minimizing the variance of the target values. If a split partitions the data
into two regions R_1 and R_2, the split is chosen to minimize:

∑
𝑥𝑖∈𝑅1

(𝑦𝑖 − ̄𝑦𝑅1)2 + ∑ 𝑥𝑖 ∈ 𝑅2(𝑦𝑖 − ̄𝑦𝑅2
)2,

where ̄𝑦𝑅1 and ̄𝑦𝑅2 are the mean values of the target variable in regions 𝑅1 and 𝑅2, respectively.
3. Aggregation of Predictions: For a new input x, each tree t makes a prediction 𝑓𝑡(𝑥). The final
prediction ̂𝑦 is the average of these predictions:

̂𝑦 = 1
𝑇

𝑇
∑
𝑡=1

𝑓𝑡(𝑥),

where T is the total number of trees in the forest.

Benefits of Random Forest Regression - Variance Reduction: Averaging the predictions of multiple
trees reduces the variance of the model, leading to improved generalization on unseen data. -
Robustness to Outliers: Outlier effects are mitigated since extreme predictions from individual
trees are balanced by the ensemble. - Feature Randomness: Random feature selection at each split
helps de-correlate trees, which in turn improves the robustness and accuracy of the model.

This approach allows Random Forest Regression to capture complex, non-linear relationships in
the data while being less prone to overfitting compared to a single decision tree.

[31]: from sklearn.ensemble import RandomForestRegressor

Random Forest Regressor with 200 trees and default parameters
model_rf = RandomForestRegressor(n_estimators=200, max_depth=None,␣

↪random_state=42)
model_rf.fit(X_train, y_train)

make predictions on the validation set
y_pred_rf = model_rf.predict(X_val)

calculate evaluation metrics
rmse_rf = np.sqrt(mean_squared_error(y_val, y_pred_rf))
rmsle_rf = np.sqrt(mean_squared_log_error(y_val, y_pred_rf))
mae_rf = mean_absolute_error(y_val, y_pred_rf)
r2_rf = r2_score(y_val, y_pred_rf)

print(f'Random Forest RMSE: {rmse_rf:.4f}')
print(f'Random Forest RMSLE: {rmsle_rf:.4f}')
print(f'Random Forest MAE: {mae_rf:.4f}')
print(f'Random Forest R²: {r2_rf:.4f}')

Random Forest RMSE: 0.1463
Random Forest RMSLE: 0.0115
Random Forest MAE: 0.0985
Random Forest R²: 0.8853

12

Evaluation - Experiment 3 The Random Forest model performs very well in this experiment.
An RMSE of 0.1466 means that, on average, the error between the predicted and actual values
is quite small. The RMSLE of 0.0115 confirms that the predictions are accurate on a logarithmic
scale. Additionally, the MAE of around 0.1 shows that most predictions are very close to the true
values. Finally, an R^2 score of 0.8848 indicates that nearly 88% of the variation in the house prices
is explained by the model. Overall, these results demonstrate that the Random Forest approach is
highly effective for this task.

1.4 Comparison Between Experiments
In the first experiment using a basic Linear Regression model, the performance was moderate, with
relatively higher RMSE and MAE and a lower R² value. Moving to the second experiment with
Lasso Regression significantly improved all metrics: RMSE and MAE dropped notably, and R²
increased, indicating a better fit. The third experiment used a Random Forest, which performed
similarly to Lasso, achieving slightly better MSLE and MAE but a marginally lower R². Overall,
both Lasso and Random Forest outperformed the basic Linear Regression, with Lasso offering a
small edge on R² and RMSE, while Random Forest excelled in MSLE and MAE.

1.5 Conclusion
Through this project, I learned that even a simple model like linear regression can provide a
solid starting point, but more advanced techniques can significantly improve performance. Pre-
processing steps, such as handling missing values and properly transforming features, played a
crucial role in model accuracy. Experimenting with Lasso regression showed that feature selection
and regularization help to reduce overfitting and simplify the model. Finally, the Random Forest
approach demonstrated that non-linear models can capture complex patterns in the data, leading
to better predictions overall. These experiments underscore the importance of iterative testing and
thoughtful feature engineering in developing effective predictive models.

1.5.1 Impact

This project can have several important impacts. On the positive side, accurately predicting house
prices could help home buyers, real estate agents, and policymakers make more informed decisions.
It might assist in setting fair market prices, identifying affordable housing opportunities, and un-
derstanding market trends. However, there are also potential negative impacts. If the model is used
without careful consideration, it could reinforce existing biases in housing data, leading to unfair
pricing or discrimination. Moreover, over-reliance on automated models might reduce the human
insight needed in complex real estate decisions. Therefore, while the project can offer valuable
tools, it also calls for careful ethical use and transparency in its application.

1.6 References
“House Prices: Advanced Regression Techniques.” Kaggle.com, www.kaggle.com/c/house-prices-
advanced-regression-techniques/data.

Scikit Learn. “3.2.4.3.2. Sklearn.ensemble.RandomForestRegressor —
Scikit-Learn 0.20.3 Documentation.” Scikit-Learn.org, 2018, scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html.

—. “Sklearn.linear_model.Lasso.” Scikit-Learn, scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html.

13

—. “Sklearn.linear_model.LinearRegression — Scikit-Learn 0.22 Documentation.” Scikit-
Learn.org, 2019, scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html.

14

	Predicting Housing Prices Based on Different Features
	Purpose
	Preprocessing
	Visualizations
	Log-Transformed SalePrice Distribution
	Sale Price vs GrLivArea
	Score Category Breakdown by Family Income
	Linear Regression - Experiment 1
	Lasso Regression
	Random Forest - Experiment 3

	Comparison Between Experiments
	Conclusion
	Impact

	References

